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Abstract. Explicit examples of scalar enhanced diffusion due to resonances between different
transport mechanisms are presented. Their signature is provided by the sharp and narrow peaks
observed in the effective diffusivity coefficients and, in the absence of molecular diffusion, by
anomalous transport. For the time-dependent flow considered here, resonances arise between
their oscillations in time and either molecular diffusion or a mean flow. The effective diffusivities

are calculated using multiscale techniques.

1. Introduction

Passive scalar transport in a given velocity field is an issue of both theoretical and applicative
relevance [1, 2]. The combination of molecular and advective effects can lead to rather
subtle behaviours, even in the case of simple laminar flow. A rather complete theory has
been developed for the dynamics at long times and large scales (macrodynamics), using
multiscale techniques [3]. For incompressible velocity fields the macrodynamics in the
presence of scale separation is governed by an effective equation which is always diffusive
and transport is always enhanced [4]. A sufficient condition ensuring the presence of
scale separation for three-dimensional incompressible flow is a vector potential with finite
variance, both for static and time-dependent flow [5, 6] (with similar conditions for other
space dimensionalities). The small-scale velocity field properties emerge via the effective
diffusivity second-order tensor. Its calculation is reduced to the solution of one auxiliary
partial differential equation that can be efficiently solved numerically [7, 8] and variational
principles have also been derived [9]. The effective diffusivities for generic flow depend on
all the mechanisms of transport, e.g. on the advecting velocity field, on the molecular noise,
on the presence and the strength of possible mean flow [7, 10]. Each process is characterized
by its typical timescales and, if the latter are properly tuned, their mutual interference can
produce resonance effects. These lead to strong enhancement of transport, reflected in sharp
and narrow peaks in the effective diffusivity. Our aim here is to present explicit examples of
such resonance effects in simple time-dependent incompressible velocity fields. In section 2
the source of resonance is the presence of a large-scale velocity field. For random parallel
flow (section 2.1), explicit analytic expressions for the effective diffusivities are obtained
and they indeed display strong peaks for specific strengths of the large-scale velocity. In
section 2.2 the robustness of resonance effects to variations of the scale separation ratio
between the large- and the small-scale velocity field components is investigated. Numerical
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simulations show that the effects persist even for moderate scale separations. Section 3 is
devoted to a time-periodic two-dimensional (2D) flow widely studied to mimic the transport
in Rayleigh—Eenard system [11, 12]. The snapshots of the velocity field are made of closed
lines. The syncronization between the circulation in the cells and their global oscillation
provides, however, for a very efficient way of jumping from cell to cell. This mechanism,
similar to stochastic resonance [13, 14], makes the curve of the effective diffusivity versus
the frequencyw of oscillation of the flow very structured. In the limit where the molecular
diffusion vanishes, anomalous superdiffusion takes place for narrow windows of values of
w around the peaks. The anomaly is observed both in the second-order moment of particle
dispersion and in the singular behaviour of the effective diffusivity at higtld? numbers.

In section 4 we study a 2D system consisting of the superposition of steady coherent
structures and a random incoherent field with a typical correlation tim&he resonance
occurs now when the sweeping time of the coherent structure is close @onclusions

are reserved for section 5.

2. Parallel flow with a large-scale velocity field

The passive scalar fieldl(x, ) obeys (see [15]) the equation:
00(x,t) + (v-V)(x,t) = Dy AO(x, t). D)

The velocityv(x, t) is assumed here to be incompressible and given by the sum of two
terms,w and U. The first is periodic both in space (in a cell of sigeand in time
(the technique can be extended with some modifications to handle the case of random,
homogeneus and stationary velocity fields). The second is the large-scale compoognt of
varying on a typical scalé.. It is assumed that/L = ¢ « 1, wheree is the parameter
controlling the scale separation.

We are interested in the dynamics of the fie{d, ¢) on large scales- O(L), comparable
to those ofU. In the spirit of multiscale methods [3], slow variablds = ex, T = €%
andzt. = et are introduced in addition to the fast variablesind:. The time variabler, is
needed to account for the advective effects generated by the presebiceTdfe effective
equation governing the dynamics at large scales of the fie&d[10]:

30 +U - VO = V,Dys Vg0 )
where the second-order eddy-diffusivity tensor is given by
Dop(X, T) = 8ap Do — 5[ (tawp) + (upw,)] ©)

and the symbok-) denotes the average over the periodicities of the small-scale velocity
field w. The auxiliary fieldw(x, ¢; X, T) has vanishing average over the periodicities and
satisfies the equation

dw + [(uw+U) - 8lw — Ded*w = —u. (4)

2.1. A solvable case

A well known situation where the effective diffusivities can be calculated analytically is the
one of parallel flow. Let us consider in detail the case of three-dimensional random parallel
flow in the presence of a large-scale advecting velocity fléldX, T)

u(x, t) = (u(y, z,1),0,0) UX, T)=0,UX,Z,T),0). (5)

The fieldu(x, ¢) is random, homogeneous and stationary. The specific dependence on the
spatial variables makes the fields automatically incompressible. The above decomposition
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is standard in the framework of mesoscale meteorology [16]. Its physical meaning is that
small-scale eddies remain stationary while slow modifications of the large scale component
occur. This is quite a common feature in geophysics, e.g. in the planetary boundary layer
[17], where the airflow in the thin atmospheric layer near the ground is strongly driven by
sink/source forcing terms arising from the bottom boundary.

The first component of the equation (4), the only one for which the r.h.s. does not
vanish, can be easily solved in Fourier space and its solution reads

—i(k, )

Dk, w; X, T) = - : = —ii(k, )Gk, w: X, T 6
ik, X, T) = oy = Tk 0GR 0 X T) - (6)

where the advection-diffusion propagatGtk, w; X, T) is defined as
1 +00 ) ) .

i i — / ef[laH»k Do+iU -k]a do.

|a)+k2D0+|U'k 0

It follows from (3) that the only non-vanishing elements of the eddy-diffusivity tensor
are diagonal and

Gk,w; X,T) =

0 .
Dy (X,T) = Do+ / S(1) / E(k)e W PoHUKlE gy i, Dy, = D, = D. 7
0

We have for simplicity assumed the separabiliyk, w) = E(k)S(w), where E (k) and
S(w) are the spectra of the spatial and the temporal part of the correlation functin of

The simple analytic expression (7) can be used to address the question of interest in this
paper, i.e. whether it is possible to have a resonance between the oscillation frequencies
induced byU and the small-scale velocity field. We shall assume for simplitityo be
independent of bottX andT, the wavenumbek along the direction o/ (so thatk — k),
and the following temporal part of the velocity correlation function

S(r) = eV coqwt). (8)
Substituting (8) into (7) and performing a simple integration, the latter (omitting the subscript
‘xx’) takes the form

D = Do+ rO/OC E (k)R (k) dk. (9)
0

Here, the functionR (k) is

2 2 2 2
14wt 1 + [014 4 Utk
1+k2Dgt 1+k2Dot 1+k2Dot

R(k) = - =, > (10)
1+ (st + () | -] s
and g is the correlation time of turbulence
00
roz/o S(t)dr = [ (12)

Note thatR(k) — 1 when bothU — 0 and Do — 0. In the latter caseD = ugfo
(u% = [ dk E(k)), the well known result valid for velocity fields-correlated in time (see,
e.g. [8]). It follows from (9) that the combined effect @y and U is to modify the
correlation time of turbulence, producing an effective correlation tigge= R (k), which
depends on the wavenumbierlt is precisely such a dependencefothat makes it possible
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to have resonances. Let us indeed consider (10) for a vanishing valDg df is easy to
verify that, forwtr > 1/+/3, R(k) has a peak for

1
R RNt (12)

In the limit wt > 1, the previous expression reduces 16!*° = w/k. Note thatR(k)
crosses the unit value fesr > 1/+/3. The regimeR(k) > 1 corresponds to constructive
interference between the turbulent motion and the slow-varying one [18]. In contrast,
destructive interference takes place, for < 1/+/3 whereR (k) monotonically decreases
from 1 (U = 0) to zero (largel/). The effective diffusivity for small-scale flows with a
single wavenumbeky, attains at the maximum the value
1+ 0?2 (1 + 20?%7?)
1+ 4w?7?

When wt > 1 (and the velocityU is ‘synchronized’ with the oscillating velocity field
(U™ = w/kp)), the previous expression reducew@ro‘“zzfz. For U > w/ko, the effective
diffusivity D goes to zero quadratically, a8 = ugro(;%)>.

The final result is that for a random parallel flow periodic in a box of &gy, = 27/L)
andwrt > 1, the peaks of the effective diffusivityp occur for

D™ = uz,

(13)

ves= 2 =12, (14)
kol’l
with values given, for largé/, by
2.2
D' ~ E (kon) o> 2’ . (15)

The behaviour oD as a function ofU, obtained evaluating numerically the integral (9), is
shown in figure 1 for a Kolmogorov spectrufk) o k=3, and for three different values
of wr > 1/4/3. Peaks of enhanced diffusion are evident for value#/ ajiven by (14).
Note that forwt = 40, the first five peaks ob (from right to left) are close to the values
given by the expression (15).

The role of a non-vanishing molecular diffusivit®, is to reduce the height of the
peaks. This point is shown in figure 2, where the behavioubgfu3ro) is plotted as a
function of Ukgt, for wt = 40 and for three different values @,. As we shall see in
the following, these features hold also for more general flows than those considered in this
section.

It is finally worth noting that parallel flow permits us to present yet another simple
example of resonance. Considering indeed the expression (9) for vanishing values of
is easy to verify that for
wr——l(w 10

k2t k2
peaks ofD occur. This corresponds to a synchronization between the characteristic viscous
frequencyk?Dy of the random molecular noise and the frequencyf the oscillatory
velocity field.

- (16)

2.2. Parallel flow with moderate scale separations

The aim here is to show that the resonant enhanced diffusion previously discussed also
appears when only moderate scale separation factors are present. As in (1), consider indeed
the velocity fieldv = u + U with u parallel to thex-axis

u = (uy cogkyy + wit), 0, 0) (17)
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Figure 1. The eddy-diffusivityD/(u%ro) versus the mean flow strengthkor. The curve is
obtained by numerical integration of (9) foxy = 0O, Ek) o k53, temporal correlation function
S(r) = e 1"/ cogwr) and Strouhal numbe$ = ugroko ~ 1. The three curves correspond to
(@): ot = 40; (b): wt = 5; (c): wr = 1/+/3. The broken curve joins the peaks Bfgiven by
the expression (15) for =1, 2,...,5.

andU parallel to they-axis
U = (0, up codkox + wyt), 0) (18)

and k; > kp. The situationk; > k, corresponds to the scale-separated case previously
considered. Here, we shall assume= 2.5k, (andu; = uy) and we shall be interested in
the dynamics at scales much larger thait,l The two components of the velocity field
v have moderate scale separation and affect transport on equal footing. The velocity
not being a parallel flow, analytical expressions for the effective diffusiviigsare no
longer available. We had then to solve numerically the standard auxiliary equation arising
from multiscale methods (see, e.g. [8]). The equation is solved by using a pseudo-spectral
method [21] in the basic periodicity cell with a grid mesh of6@4 points. De-aliasing has
been obtained by a proper circular truncation which ensures better isotropy of numerical
treatment. Time marching has been performed using a leap-frog scheme mixed with a
predictor—corrector scheme (see [22]) at regular intervals.

To enlighten the resonant diffusion enhancementis fixed and theD;; behaviour as
a function ofw, is investigated. Results are reported in figures 3 and 4, wbgr,éugrl)
versus 4, /w; is presented for different values 6k. Here,u3 = u? +u3 andty = 27 /w;
is the oscillation period of the small-scale component. Results clearly exhibit resonance
peaks forw, = w1, wp = w1/2, wy ~ wyy, and wy ~ 2wy, Where the frequency,,, is
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Figure 2. The same as in figure 1, but the behaviourm/f(uéro) is now plotted for three
different values ofDg andwt = 40. Dotted curve:Dgy = 0O; full curve: Do/(ugro) =5x10%
broken curve:Do/(ucz,ro) =5x 1073, Note that the largeDy is, the broader are the peaks.

defined as

2 . L
d with Ty, = —

sw 0

Wyyy =

and 4v,, /w1 = +/2. There are other peaks far < w,,, corresponding to submultiples of
w1 and wgy, .

Note in figure 4 thatD,, increases fow, — 0. This is qualitatively understood as
follows. For smallw,, the velocity field is essentially a stationary shear flow in the
direction superimposed to a rapidly changing small-scale component. The picture is rather
close to the Taylor mechanism for the longitudinal diffusion in the shear flow, which is
known to lead to a ADy behaviour forDy; [23].

3. Diffusion in time-periodic Rayleigh—Bénard convection

Let us consider the two-dimensional velocity field defined by the following stream function
¥(x,y,t) = YoSin(x + Bsinwt) siny. (19)

This flow [11, 12] is a simple model for transport in time-periodic Rayleigbrdd
convection. The stream function (19) describes a single-mode, two-dimensional convection
with a rigid boundary condition. The even oscillatory instability [19] is accounted for by
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Figure 3.
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The non-dimensional eddy-diffusivit)Dll/(u%rl) versus the non-dimensional
frequency 4, /w1, for different values ofDo/(uSrl). The cases (a), (b) and (c) correspond

to Do/(u3t1) = 3 x 1073, Do/(udt1) = 3 x 107* and Do/ (u3t1) = 3 x 1075, respectively.
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the term B sinwt, representing the lateral oscillation of the roll.
comparison of the behaviour in this flow with the experimental data has shown that the

Figure 4.

40,/ w

The non-dimensional eddy—diﬁusivithz/(u%rl) versus the non-dimensional
frequency 4, /w1, for different values ofDo/(uSrl). The cases (a), (b) and (c) correspond
to Do/ (u3t1) = 3 x 1073, Do/(udt1) = 3 x 107 and Do/ (u371) = 3 x 1075, respectively.

In [12], a quantitative

basic mechanisms of convective transport are well captured by the expression (19).
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For a fixedwt, the oscillation frequency of a Lagrangian particle close to the centre
of the periodic cell is of the order ofy. The periodicity of the cell ig. = 27 and the
dimensionless parameter controlling the dynamiesdswL?/y9. The two limiting regimes
€ < 1 ande > 1 have been investigated in [20] to obtain the expressions of the diffusion
coefficients in the limit of zero molecular diffusivity. Here, we shall concentrate on the
behaviour fore ~ 1. It is indeed precisely in this region that a synchronization between the
characteristic frequencies(@y) and Qw) can take place. In all the cases reported here,
a resolution 512 512 has been used, which is found adequate for molecular diffusivities
Do/vVo > 5 x 1074, The system evolution has been computed up to time€.50@), with
a time stepAr = 1072L? /.

For small enough (or vanishing) molecular diffusivities, the numerical integration of
the partial differential equation (4) is clearly subject to instabilities. To evaluate the
eddy-diffusivities, it is then more convenient to integrate the equatjan=d v for the
coordinatese(¢)’s of the Lagrangian particles. This is made by using a second-order Runge—
Kutta scheme and then performing a linear fit(pf(r) — x(0)]?) versust, to obtain the
diffusion coefficient. The averages are made over different realizations and are performed
by uniformly distributing 16 particles in the basic periodic cell. The system evolution
has been computed up to times*18/y,. Numerical schemes have been tested both for
vanishing values ofo and for large Bclet number. Asymptotic solutions for the effective
diffusivity are indeed available in these limits (see equation (27) in [24]). Measured diffusion
coefficients agree with the theoretical values within errors of less than 1%.

The turbulent diffusivity (thex-component) versus the frequen@y.?/v is shown in
figure 5 for different values oDgy/vo. A few comments are in order. First, the turbulent
diffusivity shows maxima which seem similar to those observed for stochastic resonance
[13, 14]. Here, the resonance is between the lateral roll oscillation frequency and the
characteristic frequencies of the scalar field motion. Second, the effd2g ofi the shape
of the peaks is twofold: similarly to the case of the parallel flow, the smallddjisthe
sharper are the peaks. Furthermore, from the expanded view of figaxeitSdppears that
variations of Dy also cause a shifting of maxima positions.

For Dy — 0, the peak shown in figure 5 moves towarsfi%/y, ~ 1.1 and the transport
becomes superdiffusive @y = 0, i.e. the mean-squared displacement is superlinear:

([x () — x(0)]?) o t* with « > 1. (20)

The range ofvL? /v, values where the process is superdiffusive turns out to be very narrow:
for wL?/v0 = 1.1 the mean-squared displacement behaviour is given by (20) with exponent
a ~ 1.3; both forwL?/y = 1.075 andwL?/y = 1.15 the diffusion process is standard
(i.,e.« = 1). This point is illustrated in figure 6, where the mean-squared displacement as
a function of the time is shown in a log—log plot f@i.?/vyo = 1.075, wL?/vyo = 1.1 and
wL?/yo = 1.15.

A more careful test of the anomalous diffusion@§ = 0 consists in computing the
diffusion coefficientD as function ofDy. As suggested in [8], in the presence of genuine
anomalous diffusion, the effective diffusivity must diverge and it is expecteddhat D, p
with 8 > 0. The curveD versusDg at wL?/y = 1.1 is shown in figure 7. The data are
well fitted by a straight line with slopg ~ 0.18, confirming the presence of anomalous
diffusion at Dg = 0.
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Figure 5. The turbulent diffusivity D/ versus the frequencypL2/vy for different values
of the molecular diffusivity Do/vo. (a): Do/v¥o = 3 x 10~3 (dotted curve); Do/vo =
1 x 10~3(broken curve); Do/yo = 5 x 10~* (full curve). (©): Do/yo = 1 x 1072 (a);
Do/vo = 6 x 1073 (b); Do/vo = 3x 1073 (); Do/v0 = 1x 10-3 (d); Do/v0 = 5x 10~ (e).
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4. Enhanced diffusion in the presence of coherent structures

We shall consider now the case where the two-dimensional large-scale compboensists
of a coherent structure. The small-scale parts random. Specificallyy = (u1, uz),
where theu;’s are homogeneous, isotropic and stationary Gaussian random processes. Their
Fourier transformgi; have zero mean and correlation functions
(i (k, i (K, 1)) = 21)28(k + KR (k)T (k,t — 1) (21)
where
li—t|

R\ij(k) = (Sijkz — klkj)f(k) and Tk, t — t/) =e @,
The f (k) function is related to the field energy spectrifitk) as follows:

1 3
E(k) = o-k°[ (k).

The following expressions foE (k) and (k) have been considered

AR® kel0,k!]
E(k)={ Bk™3 kelkl k] (22)
ce* k > ki,
and
Dk~3 kel0,k!]
t(k) = { Fk3 k e [kL, ki (23)

Gk iet  k>kl,
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Figure 7. The diffusion coefficienth as a function ofDg atwL?/vy = 1.1 (in a log—log scale).
The slope of the broken line isg ~ 0.18.

where the constantd, C and D, G are chosen to ensure the continuity Bfk) and t (k)

in k! and k!, respectively. The expression fei(k) is meant to mimic 3D turbulence,
neglecting intermittency and correlations between phases. uftig 1) can be easily
generated by a linear Langevin equation. The coherent large-scale component has the
cellular structure

U = U(cosy, cosx) (24)

characterized by the typical Lagrangian tiffie= 7/(~/2U). From the isotropy of the field

it follows that D;; = Dy, = D. In figure 8 the diffusion coefficienD/(ugrl) is shown as

a function of7, /1, wherer; = (k) is a characteristic timescale of the random field and
ug = [dkE (k).

The above results have been obtained performing direct numerical simulations of the
auxiliary equation (4) (nowJ = 0 andw has the spectrum defined by (22)) by using a
pseudo-spectral method over the periodic baxx22r with a resolution 64x 64.

It is well evident that the presence of a peak Tofty ~ 7 andDo/(ugtl) =39x104,
whose value isD/(u3t;) ~ 0.86. The fact that the peak does not appearZfgir; of the
order of unity is most likely due just to the freedom in the definition of the characteristic
timesT. andz;. In contrast, it is important to note that the value of the peak is much larger
than the one occurring when either the random field or the coherent structure are absent.
The vaIueD/(ugrl) ~ 0.86 has in fact to be compared with0OF and 032, respectively.

Unlike the resonance in the Reyleighéigard convection, the syncronization mechanism
produces here a broad peak. This is not surprising as in this case the random field has a
wide spectrum of characteristic times.
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Figure 8. The non-dimensional eddy-diffusivit;D/(u(Z)rl) versus the non-dimensional
Lagrangian timef}. /z; for Do/(u3ty) = 3.9 x 107% andk}, /k!, = 4.5.

5. Conclusions

Multiscale techniques have been used to present a series of explicit examples of strong
diffusion enhancement due to resonance effects between different transport mechanisms.
The effects appear already from the analytical expression of eddy-diffusivity for random
flows with a large-scale mean flow component, are robust to a reduction of the scale
separation and they are also observed in convective transport and when coherent structures
are present on the large scales. For vanishing molecular diffusivities and for specific values
of the control parameters, the enhanced diffusion might turn into anomalous superdiffusion.
Finally, let us stress in which respect the resonant enhanced diffusion effects discussed in
this paper differ from other known mechanisms to produce strong transport. For Taylor
longitudinal diffusion in shear flow, open streamlines producing large effective diffusivities
are, for example, present in the snapshots of the velocity field itself. For the convective flow
in section 3, snapshots of the velocity field are always made of closed streamlines. Open
streamlines, and more generally enhanced transport, have a dynamical origin and require a
temporal syncronization between different transport mechanisms.
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